
PUSHING MEASUREMENT TO THE ULTIMATE STOCHASTIC

LIMIT: THE STOCHASTIC DYNAMICS OF FLUID-COUPLED

NANOCANTILEVERS

AFOSR FA9550-07-1-0222

FINAL REPORT

Mark Paul

Department of Mechanical Engineering

Virginia Tech

Abstract

We have developed a fundamental understanding of nanoscale fluid dynamics for fluid-

based technologies with unprecedented capabilities. Using analytics and numerics we

have investigated the Brownian driven, and externally driven, dynamics of micro and

nanoscale elastic objects (such as cantilevers and beams) in a viscous fluid over a wide

range of system parameters and for a number of experimentally important configurations.

We developed an approach to compute the Brownian or externally driven dynamics using

a single deterministic computation that can be performed on a personal workstation. Ther-

mal motion is computed using the fluctuation-dissipation theorem and externally driven

dynamics using transfer function theory. We quantify the effects of the cantilever and

beam geometry upon their dynamics, the role of nearby bounding surfaces, the increased

frequency and quality factors when using the higher flexural modes, and build a physical

understanding of the fluid correlated motion of an array of elastic objects.

1 Computing the Stochastic and Driven Dynamics of Elas-

tic Objects in Fluid

The stochastic dynamics of micron and nanoscale cantilevers driven by thermal or Brown-

ian motion can be quantified using strictly deterministic calculations. This is accomplished
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using the fluctuation-dissipation theorem since the cantilever remains near thermodynamic

equilibrium [1, 2]. As part of this research project we have extended this approach to the

experimentally important case of determining the stochastic dynamics of the angle of the

cantilever tip. The following discussion has been reported in Refs. [3,4].

The autocorrelation of equilibrium fluctuations in cantilever displacement can be deter-

mined from the deterministic response of the cantilever to the removal of a step force

from the tip of the cantilever (i.e. a transverse point force removed from the distal end of

the cantilever). If this forcef(t) is given by

f(t) =

{

F0 for t < 0

0 for t ≥ 0,
(1)

wheret is time andF0 is the magnitude of the force, then the autocorrelation of the equi-

librium fluctuations in the displacement of the cantilever tip is given directly by

〈u1(0)u1(t)〉 = kBT
U1(t)

F0

, (2)

wherekB is Boltzmann’s constant,T is the temperature, and〈〉 is an equilibrium ensemble

average. In our notation lower case letters represent stochastic variables (u1(t) is the

stochastic displacement of the cantilever tip) and upper case letters represent deterministic

variables (U1(t) represents the deterministic ring down of the cantilever tip due to the step

force removal). The spectral properties of the stochastic dynamics are given by the Fourier

transform of the autocorrelation.

The thermodynamic approach is valid for any conjugate pair of variables [5]. For example,

it is common in experiment to use optical techniques to measure the angle of the cantilever

tip as a function of time [6]. It has also been proposed to use piezoresistive techniques to

measure voltage as a function of time [7]. The thermodynamic approach remains valid for

these situations by choosing the correct conjugate pair of variables.

We have also explored the stochastic dynamics of the angle of the cantilever tip. In this

case, the angle of the cantilever tip is conjugate to a step point-torque applied to the can-

tilever tip. If this torque is given by

τ(t) =

{

τ0 for t < 0

0 for t ≥ 0,
(3)

whereτ0 is the magnitude of the step torque, then the autocorrelation of equilibrium fluc-

tuations in cantilever tip-angleθ(t) is given by

〈θ1(0)θ1(t)〉 = kBT
Θ1(t)

τ0

. (4)
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L(µm) w(µm) h(µm) k (N/m) kt (N-m/rad)f0 (kHz)

(1) 197 29 2 1.3 1.6 × 10−8 71

(2) 140 15.6 0.6 0.1 8.9 × 10−10 38

Table 1: Summary of the cantilever geometries and material properties. (1) The rect-

angular cantilever. (2) The V-shaped cantilever used is the commercially available Veeco

MLCT Type E microlever that is used in AFM [8]. The geometry is given by the cantilever

lengthL, width w, and heighth. For the V-shaped cantilever the total length between the

two arms at the base isb = 161.64µm. The cantilever spring constantk, torsional spring

constantkt, and resonant frequency in vacuumf0 are determined using finite element nu-

merical simulations. The cantilevers are immersed in water with densityρl = 997 kg/m3

and dynamic viscosityη = 8.59× 10−4 kg/m-s.

HereΘ1(t) represents the deterministic ring down, as measured by the tip-angle, resulting

from the removal of a step point-torque. Again, the Fourier transform of the autocorrela-

tion yields the noise spectrum.

A powerful aspect of this approach is that it is possible to use deterministic numerical sim-

ulations to determineU1(t) andΘ1(t) for the precise cantilever geometries and conditions

of experiment. This includes the full three-dimensionality of the dynamics which are not

accounted for in available theoretical descriptions. The numerical results can be used to

guide the development of more accurate theoretical models.

1.1 The stochastic dynamics of cantilever tip-deflection and tip-angle

The stochastic dynamics of the cantilever tip-displacementu1(t) and that of the tip-angle

θ1(t) yield interesting differences. Using the thermodynamic approach, insight into these

differences can be gained by performing a mode expansion of the cantilever using the

initial deflection required by the deterministic calculation. The two cases of a tip-force

and a tip-torque result in a significant difference in the mode expansion coefficients which

can be directly related to the resulting stochastic dynamics.

For small deflections the dynamics of a cantilever with a non-varying cross section are
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given by the Euler-Bernoulli beam equation,

µ
∂2U

∂t2
+ EI

∂4U

∂x4
= 0, (5)

whereU(x, t) is the transverse beam deflection,µ is the mass per unit length,E is Young’s

modulus, andI is the moment of inertia [9]. For the case of a cantilever where a step force

has been applied to the tip at some time in the distant past the steady deflection of the

cantilever att = 0 is given by

U(x) = − F0

2EI

(

x3

3
− Lx2

)

, (6)

whereL is the length of the cantilever and the appropriate boundary conditions areU(0) =

U ′(0) = U ′′(L) = 0 andU ′′′(L) = −F0/EI. The prime denotes differentiation with

respect tox.

Similarly, the deflection of the same cantilever beam due to the application of a point-

torque at the cantilever-tip is quadratic in axial distance and is given by

U(x) =
τ0

2EI
x2, (7)

where the appropriate boundary conditions areU(0) = U ′(0) = U ′′′(L) = 0 andU ′′(L) =

τ0/EI. The angle of the cantilever measured relative to the horizontal or undisplaced

cantilever is then given bytan Θ = U ′(x).

The mode shapes for a cantilevered beam are given by

Φn(x) = − (cos κL + cosh κx) (cos κL − cosh κx)

+ (sin κL − sinh κx) (sin κL + sinh κx) , (8)

wheren is the mode number, and the characteristic frequencies are given byκ4 = ω2µ/EI.

The mode numbersκ are solutions to1 + cos κL cosh κL = 0 [9]. The initial cantilever

displacement given by Eqs. (6) and (7) can be expanded into the beam modes

U(x) =
∞

∑

n=1

anΦn(x), (9)

with mode coefficientsan. The total energyEb of the deflected beam is given by

Eb =
EI

2

∫ L

0

U ′′(x)2dx, (10)
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which is entirely composed of bending energy. The fraction ofthe total bending energy

contained in an individual mode is given by

bn =
EI

2Eb

∫ L

0

(anΦ′′
n(x))

2
dx. (11)

The coefficientsbn for the rectangular cantilever of Table 7 are shown in Table 2. For the

case of a force applied to the cantilever tip, 97% of the total bending energy is contained

in the fundamental mode and the energy contained in the higher modes decays rapidly

with less than 1% of the energy contained in mode three. When a point-torque is applied

to the same beam it is clear that a significant portion of the bending energy is spread over

the higher modes. Only 61% of the energy is contained in the fundamental mode and the

decay in energy with mode number is more gradual. The fifth mode for the tip-torque case

contains more energy than the second mode for the tip-force case. Although we have only

discussed a mode expansion for the rectangular cantilever, the V-shaped cantilever will

exhibit similar trends since the transverse mode shapes are similar to that of a rectangular

beam [10].

The variation in the energy distribution among the modes required to describe the initial

deflection of the cantilever can be immediately connected to the resulting stochastic dy-

namics. For the deterministic calculations the initial displacement can be arbitrarily set to

a small value. In this limit the modes of the cantilever beam are not coupled through the

fluid dynamics. As a result, the stochastic dynamics of each mode can be treated as the

ring down of that mode from the initial deflection. This indicates that the more energy that

is distributed amongst the higher modes initially the more significant the ring down and,

using the fluctuation-dissipation theorem, the more significant the stochastic dynamics.

The mode expansion clearly shows that the tip-torque case has more energy in the higher

modes. This suggests that stochastic measurements of the cantilever tip-angle will have a

stronger signature from the higher modes than measurements of cantilever tip-displacements.

Using finite element simulations for the precise geometries of interest we quantitatively

explore these predictions.

1.2 Computing the Driven Dynamics

In order to calculate the cantilever dynamics due to an external driving force we com-

pute the cantilever’s response to an appropriately chosen impulse in force. This has been

done using an impulse in velocity to explore the driven dynamics of cantilevers beams of
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n bn (tip-force) bn (tip-torque)

1 0.97068 0.61308

2 0.02472 0.18830

3 0.00315 0.06473

4 0.00082 0.03309

5 0.00030 0.02669

Table 2: The fraction of the total energyEb contained in the first five beam modes given by

the coefficientsbn. The tip-force results are for a rectangular beam that has been deflected

by the application of a point force to the cantilever tip. The tip-torque results are for

a rectangular beam that has been deflected by the application of a point torque to the

cantilever tip. The coefficients clearly show that the tip-torque case has significantly more

energy contained in the higher modes.

〈u2

1
〉1/2(nm) 〈θ2

1
〉1/2(rad)

(1) 5.6 5.0 × 10−7

(2) 20 7.0 × 10−9

Table 3: The magnitude of stochastic fluctuations in tip-deflection and in tip-angle for the

rectangular (1) and V-shaped (2) cantilevers. These values were obtained from numerical

simulations simulations of the beams in vacuum.

varying geometry, near a solid wall, and including the effects of higher modes of oscilla-

tion [11]. In what follows we focus upon the dynamics of the fundamental flexural mode

and allow the driving force to vary spatially given by,

Fd(x
∗, t) =

{

F0δ(t) x ≤ ξ

0 x > ξ
(12)

wherex
∗ = (L, b/2, h/2) indicates the tip coordinates where the force is applied where

F0 is a constant force. The time dependent displacement of the cantileverW (x, t) due to

the application of the drive force is computed numerically. The power spectrum in terms

of cantilever displacement is then given by

Pw(x, ω) =
∣

∣

∣
Ŵ (x, ω)

∣

∣

∣

2

. (13)

6



The power spectrum in terms of cantilever angle is found by computing the slope of

W (x, t) at the region of interest to yieldΘ(x, t) and

Pθ(x, ω) =
∣

∣

∣
Θ̂(x, ω)

∣

∣

∣

2

. (14)

An advantage of this approach is that the complete spectral response over all frequency,

and for all modes, is determined from a single numerical simulation. The alternative of

performing many simulations at different frequencies is computationally prohibitive for

these systems.

2 The role of cantilever geometry

In this section we report on our progress in quantifying the stochastic dynamics of a can-

tilever in fluid as a function of the cantilever geometry. The resulting fluid-solid interaction

problem is quite complex and geometric effects can have a significant impact upon device

performance. We have explored two important geometries that are commonly used: a can-

tilever with a rectangular cross-sectional area, and a cantilever with a V-shaped planform

as shown in Fig. 1. The results of our study have been reported in detail in Refs. [3,4].

2.1 Rectangular Cantilever

We have performed deterministic numerical simulations of the three-dimensional, time

dependent, fluid-solid interaction problem to quantify the stochastic dynamics of a rect-

angular cantilever immersed in water using the thermodynamic approach previously dis-

cussed. The deterministic numerical simulations are done using a finite element approach

that is described elsewhere [12,13].

The stochastic fluctuations in cantilever tip-displacement for a rectangular cantilever in

water have been described elsewhere [2, 5, 14, 15]. In the following we compare these

results with the stochastic dynamics as determined by the fluctuations of the cantilever

tip-angle. The geometry of the the specific micron scale cantilever we explore is given in

Table 7.

The autocorrelations in equilibrium fluctuations follow immediately from the ring down

of the cantilever due to the removal of a step force (to yield〈u1(0)u1(t)〉) or step point-

torque (to yield〈θ1(0)θ1(t)〉). The autocorrelations of the rectangular cantilever are shown
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Figure 1: Schematics of the two micron scale cantilever geometries considered (not drawn

to scale). Panel (a), A rectangular cantilever with aspect ratiosL/h = 98.5, w/h = 14.5,

andL/w = 6.8. The cantilever is composed of silicon with densityρc = 2329 kg/m3

and Youngs ModulusE = 174 GPa. Panel (b), A V-shaped cantilever with aspect ratios

L/h = 233, w/h = 30, andL/w = 7.8. The total width between the two arms normalized

by the width of a single arm isb/w = 10.36. The cantilever planform is an equilateral

triangle withθ = π/3. The cantilever is composed of silicon nitride withρc = 3100kg/m3

andE = 172GPa. The specific dimensions for the rectangular and V-shaped cantilever

are given in Table 7.

in Fig. 2. The magnitude of the noise is quantified by the root mean squared tip-angle and

deflection which is listed in Table 3.

A comparison of the autocorrelations yields some interesting features. At short times

〈θ1(0)θ1(t)〉 shows the presence of higher harmonic contributions. This is shown more

clearly in the inset of Fig. 2. This further suggests that the angle autocorrelations are more

sensitive to higher mode dynamics.

The Fourier transform of the autocorrelations yield the noise spectra shown in Fig. 3. In

our notation the subscript ofG indicates the variable over which the noise spectrum is

measured:Gθ is the noise spectrum for tip-angle andGu is the noise spectrum for tip-

displacement. The equipartition theorem of energy yields,

1

2π

∫ ∞

0

Gu(ω)dω =
kBT

k
(15)

1

2π

∫ ∞

0

Gθ(ω)dω =
kBT

kt
(16)

wherek andkt are the transverse and torsional spring constants, respectively. The curves

in Fig. 3 are normalized using the equipartition result to have a total area of unity. Using

this normalization the area under a peak is an indication of the amount of energy contained
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Figure 2: The normalized autocorrelation of the rectangularcantilever for tip-deflection

(solid) and tip-angle (dashed). (Inset) A detailed view of the autocorrelation at short time

differences to illustrate the influence of higher modes in the tip-angle measurements.

in a particular mode. Figure 3 shows only the first two modes, although the numerical

simulations include all of the modes (within the numerical resolution of the finite element

simulation). The energy distribution across the first two modes shows the significance of

the second mode for the tip-angle dynamics.

Using a simple harmonic oscillator approximation it is straight forward to compute the

peak frequencyωf and qualityQ for the cantilever in fluid. Using a single mode approxi-

mation yields the values shown in Table 4. As expected there is a significant reduction in

the cantilever frequency when compared with the resonant frequency in vacuumω0 and

the quality factor is quite low because of the strong fluid dissipation. The values ofωf and

Q for tip-angle and tip-dispacement are nearly equal. This is expected since the displace-

ments and angles are very small, resulting in negligible coupling between the modes. Any

differences inωf andQ can be attributed to using a single mode approximation.

It is useful to compare these results with the commonly used approximation of an oscil-

lating, infinitely long cylinder with radiusw/2 [2,16,17]. The cantilever used here has an

aspect ratio ofL/w ≈ 7 and the infinite cylinder theory is quite good at predicting ofωf

andQ.
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Figure 3: The noise spectra of stochastic fluctuations in cantilever tip-angle (dashed) and

tip-deflection (solid) for the rectangular cantilever. The curves are normalized to have the

same area, however only the first two modes are shown.

2.2 The stochastic dynamics of a V-shaped cantilever

We have also explored the stochastic dynamics of a V-shaped cantilever in fluid. An inte-

gral component of any theoretical model is an analytical description of the resulting fluid

flow field caused by the oscillating cantilever. The deterministic finite element simulations

that we performed yield a quantitative picture of the resulting fluid dynamics. Exploring

the flow fields further yields insight into the dominant features that contribute to the can-

tilever dynamics.

As discussed earlier, for long and slender rectangular cantilevers the flow field is often

approximated by that of a cylinder of diameterw undergoing transverse oscillations. This

approach assumes that the fluid flow is essentially two-dimensional in they − z plane

and neglects any flow over the tip of the cantilever. Figure 4 (top) illustrates this tip

flow for the rectangular cantilever using vectors of the fluid velocity in thex − y plane

at z = 0. The figure is a close-up view near the tip of the cantilever. It is evident that

the flow over the rectangular cantilever is nearly uniform in the axial direction leading

up to the tip. However, near the tip there is a significant tip flow that decays rapidly in

the axial direction away from the tip. The increasing significance of the tip flow as the

cantilever geometry becomes shorter (for example, by simply decreasingL) is not certain

and remains an interesting open question. However, for the geometry used here it is clear

10



ωf/ω0 Q

(1) 0.35 3.34

(2) 0.36 3.26

Table 4: The peak frequency and quality factor of the fundamental mode of the rectangular

cantilever determined by finite element simulations using the thermodynamic approach.

(1) is computed using the cantilever tip-displacement due to the removal of a step force.

(2) is computed using the cantilever tip-angle due to the removal of a point-torque. The

frequency result is normalized by the resonant frequency in vacuumω0. Using the infinite

cylinder approximation with a radius ofw/2 the analytical predictions areQ = 3.24 and

ωf/ω0 = 0.34.

that this tip-flow is negligible based upon the accuracy of the analytical predictions using

the two-dimensional model.

Figure 4 (bottom) illustrates the tip flow for the V-shaped cantilever, again by showing

velocity vectors in thex − y plane atz = 0. The shaded region indicates the part of

the cantilever where the two arms have merged. To the right of the shaded region illus-

trates flow off the tip and to the left indicates flow that circulates back in between the two

individual arms.

In order to illustrate the three-dimensional nature of this flow, the flow field in they − z

plane is shown at two axial locations in Fig. 5. Figure 5(top) is at axial locationx = 77µm.

The two shaded regions indicate the two arms of the cantilever. Each arm is generating

a flow with a viscous boundary layer (Stokes layer) as expected from previous work on

rectangular cantilevers. However, the Stokes layers interact in a complicated manner near

the center. It is expected that as one goes from the base of the cantilever to the tip that

these fluid structures would transition from non-interacting to strongly-interacting.

Figure 5(bottom) illustrates the flow field at axial locationx = 108.8µm, the axial location

at which the two arms of the cantilever merge to form the tip region. The length of the

shaded region is therefore36µm or twice that of a single arm shown in Fig. 5(top). For

this tip region the flow field is similar to what would be expected of a single rectangular

cantilever of this width.

Overall, it is clear that the fluid flow field is more complex for the V-shaped cantilever
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Figure 4: The fluid flow near the tip of the cantilever as illustrated by the velocity vector

field calculated from finite element numerical simulations. A cross section of thex − y

plane atz = 0 is shown (see Fig. 1) that is a close-up view of the tip-region. The shaded

region indicates the cantilever (because of the small deflections used in the simulations

that cantilever does not appear to be deflected). (left) The flow field near the tip of the

rectangular cantilever. This flow field is at t=6µs and the magnitude of the largest velocity

vector shown is -0.3 nm/s. (right) The flow field near the tip of the V-shaped cantilever.

This flow field is at t=7.2µs and the magnitude of the largest velocity vector shown is -26

nm/s. The shaded region indicates the tip region where the two single arms have merged.

The open region to the left is where the two single arms have separated revealing the open

region in the interior of the V-shaped cantilever.

than for the long and slender rectangular beam. For the V-shaped cantilever the flow is

three-dimensional near the tip region where the two arms join together.

Central to the flow field dynamics are the interactions of the two Stokes layers caused

by the oscillating cantilever arms. The thickness of these Stokes layers are expected to

scale with the frequency of oscillation asδs/a ∼ Rω
−1/2 wherea is the half-width of the

cantilever andRω = ωa2/ν is a frequency based Reynolds number (often called the fre-

quency parameter). For the relevant case of a cylinder of radiusa oscillating at frequency

ω the solution to the unsteady Stokes equations yields a distance of approximately5δs to

capture 99% of the fluid velocity in the viscous boundary layer [18]. For a single arm of

the V-shaped cantilever this distance is nearly10µm. In comparison, the total distance

between the two arms at the base is125µm. This separation is large enough such that

the two Stokes layers have negligible interactions near the base. However, as the arms

approach one another with axial distance the Stokes layers overlap and eventually merge

12



Figure 5: The fluid velocity vector field at two axial positionsalong the V-shaped can-

tilever calculated from deterministic finite element numerical simulations. Cross sections

of they−z plane are shown (see Fig. 1), the entire simulation domain is not shown and the

shaded region indicates the cantilever. Both images are taken at t=7.2µs and the maximum

velocity vector shown is -26 nm/s. (left) They− z plane atx = 77µm. The skewed width

of a single arm of the cantilever in this cross-section is18µm. The distance separating the

two cantilever arms is36µm. (right) They − z plane atx = 108.8µm. This is the point at

which the two single arms join to make a continuous cross-section of width2w.

at the tip.

Despite the complicated interactions of the three-dimensional flow caused by the can-

tilever tip and the axial merging of the two Stokes layers, the V-shaped cantilever be-

haves as a damped simple harmonic oscillator. The autocorrelations in tip-angle and tip-

displacement that are found using full finite element numerical simulations are shown in

Fig. 6. It is again clear that the tip-angle dynamics have significant contributions from

the higher modes, see the inset of Fig. 6. The area normalized noise spectra are shown in

Fig. 7.

Using a simple harmonic oscillator analogy a peak frequency and a quality factor can be

determined from the first mode in the noise spectra of Fig. 7. These values are given in the

first two rows of Table 6. The quality of the cantilever isQ ≈ 2 and the peak frequency is

reduced significantly,ωf/ω0 ≈ 0.2. compared to the resonant frequency in the absence of

a surrounding viscous fluid.

It is insightful and of practical use to determine the geometry of the equivalent rectangular

beam that would yield the precise values ofk, ωf , andQ calculated for the V-shaped

13
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Figure 6: The normalized autocorrelation of equilibrium fluctuations in the tip-deflection

〈u1(0)u1(t)〉 (solid lined) and in tip-angle〈θ1(0)θ1(t)〉 (dashed-line) for the V-shaped can-

tilever. The inset shows a close-up of the dynamics for short time differences to illustrate

the influence of the higher modes in the tip-angle measurements.

cantilever from full finite-element numerical simulations. For the rectangular beam the

equations are well known (c.f. Ref. [2]) and yield a unique value of lengthL′, width w′,

and heighth′ as shown below,

k =
3EI

L′3
=

Ew′h′3

4L′3
, (17)

Q =
mfωf

γf
=

4ρch′

πρf w′
+ Γ′(w′, ωf)

Γ′′(w′, ωf)
, (18)

where the peak frequency is determined from the maximum of the noise spectrum,

Gu =
4kBT

k

1

ω0

(19)

× T0ω̃Γ′′(R0ω̃)

[(1 − ω̃2(1 + T0Γ′(R0ω̃)))2 + (ω̃2T0Γ′′(R0ω̃))2]
.

In the above equations̃ω = ω/ω0 is the normalized frequency,α = 0.234 is a constant fac-

tor to determine an equivalent lumped mass for a rectangular beam,mf is the equivalent

mass of the cantilever plus the added fluid mass,γf is the fluid damping,Γ is the hydro-

dynamic function for an infinite cylinder,Γ′ is the real part ofΓ, andΓ′′ is the imaginary

part ofΓ. Equations (28)-(18) can be solved to yield values for the unknown geometry of

the equivalent rectangular beamL′, w′, andh′ which are given in Table 5. The equivalent
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Figure 7: The noise spectra for the V-shaped cantilever as determined from the tip-

displacementGx (solid line) and from tip-angleGθ (dashed line). The curves are nor-

malized to have an area of unity, with only the first two modes shown.

beam is shorter, thinner, and wider than the V-shaped cantilever. Importantly, the width of

the equivalent beam is nearly twice that of a single arm of the V-shaped cantilever.

L′/L w′/w h/h′

0.8 1.9 0.8

Table 5: The geometry of the equivalent rectangular beam that yields the exact values ofk,

ωf , andQ for the V-shaped cantilever that have been determined from full finite-element

numerical simulations. The length, width, and height of the equivalent beam(L′, w′, h′)

are calculated using Eqs. (28)-(18) and are normalized by the values of (L, w, h) for the

V-shaped cantilever given in Table 7.

These results suggest that the parallel beam approximation (PBA) [19–22] commonly used

to determine the spring constant for a V-shaped cantilever may also provide a useful geom-

etry for determining the dynamics of V-shaped cantilevers in fluid. In this approximation

the V-shaped cantilever is replaced by an equivalent rectangular beam of lengthL, width

2w, and heighth to yield a simple analytical expression for the spring constant. This has

been shown to be quite successful for V-shaped cantilevers that have arms that are not sig-

nificantly skewed. The results of using the geometry of this approximation to determine
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ωf andQ from the two-dimensional cylinder approximation are shown on the third row of

Table 6. It is clear that this is quite accurate. It is expected that these results will remain

useful for cantilever geometries that do not deviate significantly from that of an equilat-

eral triangle as studied here. An exploration of the breakdown of this approximation is

possible using the methods described but is beyond the scope of the current efforts.

ωf/ω0 Q

(1) 0.21 1.98

(2) 0.22 2.04

(L, 2w, h) 0.19 1.98

Table 6: The peak frequency and quality factor of the fundamental mode of the V-shaped

cantilever determined by finite element simulations using the thermodynamic approach.

(1) is computed using the cantilever tip-displacement due to the removal of a step force. (2)

is computed using the cantilever tip-angle due to the removal of a point-torque. The third

line represents theoretical predictions using the geometry of an equivalent rectangular

beam given by(L, 2w, h). The frequency result is normalized by the resonant frequency

in vacuumω0.

3 The importance of nearby bounding surfaces

In practice, the cantilever is never placed in an unbounded fluid and the influence of nearby

boundaries must be accounted for to provide a complete description of the dynamics.

In many cases the cantilever is purposefully brought near a surface out of experimental

interest in order to probe some interaction with the cantilever or to probe the surface itself.

This can have a significant impact upon the performance of a device. Overall, the presence

of a boundary tends to increase the viscous dissipation acting upon a cantilever causing

the quality factor of the oscillations to decrease. In our research we have quantified this

precisely over a wide range of experimentally relevant conditions. This work has been

published in Refs. [3,4].

To specify our discussion we will consider the situation depicted in Fig. 8 showing a

cantilever a distances from a planar boundary. In the following we study the case where
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the cantilever exhibits flexural oscillations in the direction perpendicular to the boundary.

However, we would like to emphasize that our approach is general and can be used to

explore arbitrary cantilever orientations and oscillation directions if desired. The fluid is

assumed to be unbounded in all other directions. It is well known that the presence of the

boundary will influence the dynamics of the cantilever [23–25]. The result is a reduction

in the resonant frequency and quality factor. This has been described theoretically for the

case of a long and thin cantilever of simple geometry where the fluid dynamics have been

assumed two-dimensional [26–29].

s

h

Figure 8: A schematic of a cantilever a distances away from a solid planar surface (not

drawn to scale). The cantilever undergoes flexural oscillations perpendicular to the sur-

face.

In the following we use the thermodynamic approach with finite element numerical simu-

lations to quantify the dynamics of the V-shaped cantilever as a function of its separation

from a boundary. We have performed 8 simulations over a range of separations from 10 to

60µm using both the tip-deflection and tip-angle formulations. The noise spectra for these

simulations are shown in Fig. 9. Using the insights from our simulations of the V-shaped

cantilever in an unbounded fluid we expect the relevant length scale for the fluid dynamics

to be twice the width of a single arm,2w. Using the peak frequency of the V-shaped can-

tilever in unbounded fluid yields a Stokes lengthδs = 4.14µm. Scaling the separation by

the Stokes length yields.2.5 . s/δs . 15 which covers the range from what is expected

to be a strong influence of the wall to a negligible influence. Figure 9 clearly shows a

reduction in the peak frequency and a broadening of the peak as the cantilever is brought

closer to the boundary. In fact, for the smaller separations the peak is quite broad and the

trend suggests that eventually the peak will become annihilated as the cantilever is brought

closer to the boundary.

Using the noise spectra we compute a peak frequency and a quality factor for the funda-
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Figure 9: Panel (a) The noise spectraGu of stochastic fluctuations in cantilever tip-

deflection for separationss = 10, 12, 15, 20, 40µm. Panel (b) the noise spectraGθ of

stochastic fluctuations in cantilever tip-angle for separationss = 15, 25, 60µm. The spec-

tra have been normalized by the maximum value ofGu or Gθ. The smallest and largest

values of separation are labeled with all other values appearing sequentially.

mental mode as a function of separation from the boundary, which are plotted in Fig. 10.

The horizontal dashed line represents the value of the peak frequency and quality factor in

the absence of bounding surfaces using the two-dimensional infinite cylinder approxima-

tion [2] where the cylinder width has been chosen to be2w. It is clear from the results that

for separations greater thans/δs & 7 the V-shaped cantilever is not significantly affected

by the presence of the boundary. However, as the separation decreases below this value

the peak frequency and quality factor decrease rapidly.

The triangles in Fig. 10 represent the theoretical predictions of Green and Sader [28, 29]

using a two-dimensional approximation for a beam of uniform cross-section that accounts

for the presence of the boundary. We have used a width of2w in computing these the-

oretical predictions for comparison with our numerical results. Despite the complex and

three-dimensional nature of the flow field the theory is able to accurately predict the quality

factor over the range of separations explored. The frequency of the peak for the V-shaped

cantilever shows some deviation from these predictions.

In general, an increase in the period of oscillation for a submerged object can be attributed

to the mass of fluid entrained by the object [30]. The lower peak frequency calculated for

the V-shaped cantilever using a two-dimensional solution indicates an over-prediction of
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the mass loading. This can be attributed to the three-dimensional flow around the tip being

neglected for this approach. It is reasonable to expect the cantilever tip to carry a smaller

amount of fluid than a section of the beam body moving with the same velocity, see Fig. 4.

The quality factor relates to the ratio of the mass loading and the viscous dissipation and

is less sensitive to deviations incurred from the two-dimensional approximation. Despite

neglecting three-dimensional flow around the cantilever tip, the two-dimensional model

for the fluid flow around the V-shaped cantilever gives an accurate prediction of the peak

frequency and quality factor.
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Figure 10: The variation of the peak frequency (panel (a)) andquality (panel (b)) of the

fundamental mode of the V-shaped cantilever in fluid as a function of separation from

a nearby wall. Results calculated using tip-deflection are circles, results using tip-angle

are squares, and theoretical predictions using the results of Ref. [29] are triangles. The

peak frequency and quality factor of the fundamental mode in an unbounded fluid are

ω/ωf ≈ 0.19 andQ ≈ 2 and are represented by the horizontal dashed line. The distance

s is normalized by the Stokes lengthδs wherea = w to yieldδs = 4.14µm.

4 The dynamics of doubly-clamped beams in viscous fluid:

tailoring the geometry to improve quality factors

There are numerous experimental advantages to using a doubly-clamped beam as opposed

to a cantilever in fluid. Important advantages include technologies for on-chip sensing and

actuation that do not require bulky or complex optics. It is also anticipated that the higher
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frequency of oscillation of a doubly-clamped beam, when compared to a cantilever of the

same length and geometry, will lead to improved quality factors of the oscillations. In this

research we have quantified this in detail for a large range of experimentally accessible

parameters. Our results have been discussed in detail in Refs. [31,32].

4.1 Motivation for doubly-clamped beams

There is a growing need for fast and sensitive micron and nanoscale sensors and actua-

tors that operate in viscous fluid environments. Many important technologies are based

upon the dynamics of small elastic beams in fluid [6, 33–35]. If an elastic beam is uni-

formly reduced in size it will become both softer (the equivalent spring constant is re-

duced) and faster (the fundamental frequency of oscillation increases). This advantageous

trend is often exploited [35]. However, in a fluid environment the relative magnitude of

viscous forces to inertial forces becomes large resulting in a dramatic reduction in the

quality factor and resonant frequency of the fundamental mode of oscillation. For ex-

ample, the dynamics of a nanoscale cantilever in water can be overdamped [1]. Several

approaches have been proposed to overcome this difficulty including the use of the higher

order beam modes [10, 11, 33, 36–38], nonlinear feedback control strategies for the ex-

ternal drive [39, 40], by varying the cross-sectional geometry of long-thin cantilevers that

are driven externally [11], and by embedding the fluid inside the cantilever while it oscil-

lates in vacuum [41]. However, these approaches can be difficult to implement in practice

and often require sophisticated measurements and control electronics. In addition, for the

strongly damped dynamics under consideration here the mode of actuation directly af-

fects the resulting quality factor and resonant frequency (c.f. [2]). In many applications

a simpler tactic is desirable to overcome the strong viscous damping. In this paper we

explore the variation in beam dynamics as a function of its geometry. In particular, we

quantify the stochastic dynamics of doubly-clamped beams with rectangular cross-section

for a wide range of sizes and geometries including short and wide beams that are not well

described by available analytical theory. Using numerical simulations for the precise con-

ditions of experiment we quantify the Brownian driven dynamics of micron scale beams

in fluid and explore the physical origins of the fluid dissipation. These results determine

the effectiveness of tailoring the beam geometry to overcome the strong viscous damping.

We calculate the stochastic dynamics of the doubly-clamped beams, see Fig. 11, using

the thermodynamic approach discussed in detail in Refs. [1, 2]. The approach requires
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only a single deterministic calculation of the fluid dissipation that is used to compute

the stochastic beam displacement via the fluctuation-dissipation theorem. For a doubly-

clamped beam the deterministic calculation is the ring-down of the beam due to the re-

moval of a step point-force applied to the center of the beam. We emphasize that the

only assumptions in this result are that of classical dynamics and small deflections. Us-

ing three-dimensional, time dependent, finite element simulations for the precise geome-

tries of interest the stochastic dynamics are computed. In particular, we calculate the

autocorrelations and noise spectra of equilibrium fluctuations in the beam displacement.

The basic approach has been validated both against analytics and experimental measure-

ment [1,2,26,27,42] and also used to study the fluid-coupled motion of two atomic force

microscope cantilevers [43] and two nanoscale cantilevers [1, 2]. In many situations of

L
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z (a)

w

h

(b)

y

z

Figure 11: A schematic of a doubly-clamped beam used in the numerical simulations

with lengthL, width w, and heighth with uniform rectangular cross-section. (a) The

x − z plane of the beam in fluid. The beam is supported by a rigid support of width

w on each side for the short-wide geometries to minimize the effects of the bounding

side walls. The beam is light grey and the two rigid supports are darker grey. (b) The

y − z plane of the beam illustrating the rectangular cross-section. In our simulations the

beam is immersed in room temperature water and we compute the stochastic dynamics of

the fundamental flexural mode driven by Brownian motion. In the following figures the

vertical displacement of the beam atx = L/2 is referred to asz1(t) for thermally induced

fluctuations andZ1(t) for the deterministic ring down simulations.

technological and scientific interest, such as atomic force microscopy, the elastic beams

are long and thinL ≫ w ≫ h whereL is the length,w is the width, andh is height of

the beam. The fluid-solid interaction problem describing the motion of a waving beam in

fluid is very difficult with analytical solutions available only under idealized conditions

such as simple beam geometries and for small deflections [16, 17, 44, 45]. In the limit
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Figure 12: (a) The predicted variation of the quality factorQ for the stochastic displace-

ment of a beam immersed in a viscous fluid with respect to the nondimensional frequency

parameterR0 and mass loading parameterT0. (b) The predicted variation of the resonant

frequency in fluidωf with respect toR0 andT0. In both panels five curves are shown

for T0 = 0.5, 1, 2, 4, 8. The bounding two curves are labeled with the remaining curves

in sequential order.R0 is evaluated at the resonant frequency of the beam in vacuum.

The qualityQ is determined by evaluating Eq. (26) atωf whereωf is the frequency that

maximizes Eq. (20).

of small beam displacements, a two-dimensional approximation for the fluid flow over

the beam is often used to determine the force interactions with an Euler-Bernoulli beam.

This approach has been very successful in predicting the resulting beam dynamics in a

viscous fluid [16]. Furthermore, it has been shown that replacing the rectangular beam

cross-section with that of a cylinder of diameter equal to the widthw yields small errors

on the order of several percent [17]. The flow field generated by an oscillating cylinder

is well known as well as the forces acting on the surface of the cylinder [30, 46]. These

approximations have led to insightful analytical expressions describing the stochastic dy-

namics of beams in fluid [1, 16]. However, the validity and accuracy of these expressions

remain unclear for the finite beam geometries often used in experiment.

In the limit of a long and thin beam, small displacements, and using the two-dimensional

approximation of an oscillating cylinder for the fluid flow, the noise spectrum of equilib-

rium fluctuations in displacement of the beam measured atx = L/2 for the fundamental
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mode is given by [1],

G(ω) =
4kBT

k

1

ω0

T0ω̃Γi(R0ω̃)
[

(1 − ω̃2 (1 + T0Γr(R0ω̃)))2 + (ω̃2T0Γi(R0ω̃))2
] , (20)

whereω is the frequency of oscillation,̃ω = ω/ω0 is the reduced frequency,ω0 is the

resonant frequency of the fundamental mode in vacuum,R0 is the frequency parameter

evaluated atω0, Γ(ω) is the hydrodynamic function,T0 is the mass loading parameter,

kB is Boltzmann’s constant,T is the temperature, andk is the spring constant for the

fundamental mode. The frequency parameter is,

R0 =
ω0w

2

4ν
, (21)

and is a frequency based Reynolds number representing the ratio of local inertia to viscous

forces whereν is the kinematic viscosity of the fluid. In our notation, the frequency

parameterR is evaluated at arbitrary frequencyω, andRf is evaluated atωf . The mass

loading parameter is

T0 =
π

4

ρfw

ρbh
(22)

and represents the ratio of the mass of a cylinder of fluid with radiusw/2 to the actual mass

of the beam whereρf is the density of the fluid, andρb is the density of the beam. The

hydrodynamic function for an oscillating cylinder in a viscous fluid is given by [30,46],

Γ(ω) = 1 +
4iK1(−i

√
iR0ω̃)√

iR0ω̃K0(−i
√

iR0ω̃)
, (23)

whereK1 andK0 are Bessel functions,Γr andΓi are the real and imaginary parts ofΓ,

respectively andi =
√
−1.

The dynamics of a beam in fluid are not precisely equivalent to that of a damped simple

harmonic oscillator. For example, both the mass and damping are frequency dependent.

The mass of the entrained fluid plus the mass of the beam is

mf (ω) = me (1 + T0Γr(R0ω̃)) (24)

whereme = αmb is the equivalent mass of the beam such that the kinetic energy of this

mass is equal to that of the fundamental mode andmb = ρbLwh is the mass of the beam.

For the fundamental flexural mode of a doubly-clamped beamα = 0.396. The viscous

damping is

γf(ω) = mcyl,eωΓi(R0ω̃) (25)
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wheremcyl,e = αmcyl is the equivalent mass of a cylinder of fluid with diameter equal

to w. As the frequency of oscillation increases the magnitude ofmf decreases and the

magnitude ofγf increases.

The simple harmonic oscillator approximation is convenient to define commonly used

diagnostics such as the quality factorQ and resonant frequency of the beam in fluidωf . As

a result of the frequency dependent mass and damping, the fundamental peak of the noise

spectra is not well approximated as a Lorentzian for these strongly damped oscillators and

care must be taken when determiningQ andωf . The resonant frequency in fluidωf will be

defined to be the frequency which maximizes the noise spectrum in Eq. (20). The quality

factorQ is then defined as the ratio of energy stored by the potential and kinetic energy of

the beam and fluid to the energy dissipated by viscosity per oscillation when evaluated at

ωf . This yields

Q ≈ mf(ωf)ωf

γf(ωf)
=

T−1

0
+ Γr(R0ω̃f)

Γi(R0ω̃f)
. (26)

Given values of the nondimensional parametersR0 andT0, Eqs. (20) and (26) directly

yield the analytical predictions forωf andQ. The variation ofQ andωf with R0 and

T0 are shown in Fig. 12 over a large range of parameters. The quality factor increases

significantly as the frequency of oscillation is increased and also increases as the mass

loading decreases. The resonant frequency of the beam when placed in fluid,ωf/ω0, also

increases with frequency of oscillation and with a reduction in mass loading. The increase

of ωf/ω0 with respect toR0 is very rapid forR0 . 20 with only small changes for higher

frequencies, while the dependence uponT0 results in a nearly uniform increase over the

range shown. It is typical forR0 ∼ 1 andT0 ∼ 1 for many proposed microscale applica-

tions in water. In this case the analytics predict strongly damped dynamics withQ ∼ 2.

For applications that require a distinct peak to be measured this presents a significant

challenge.

Using Euler-Bernoulli beam theory [9] for a doubly-clamped beam these expressions can

be written as a function of geometry(L, w, h) which are often the experimentally relevant
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parameters rather thanR0 andT0. The relevant expressions are,

ω0 =
11.2√

3

√

E

ρb

h

L2
, (27)

k = 16E

(

h

L

)3

w, (28)

R0 =
2.8√

3

1

ν

√

E

ρb

(w

L

)2

h, (29)

whereE is the Youngs modulus. These expressions forT0 andR0 together with Fig. 12

suggest thatQ andωf increase by reducing the length, increasing the width, or increasing

the height of the beam. However, the precise improvement is not clear since the avail-

able theoretical predictions are only for long and slender beams. In light of this we have

performed full time-dependent and three-dimensional finite element numerical simula-

tions [13] of a wide range of geometries to determine precisely the stochastic dynamics.

To compute the stochastic dynamics of the beams we use the approach discussed in

Refs. [1, 2] and provide only the essential details necessary for our discussion. The auto-

correlation of equilibrium fluctuations in beam displacement are given by the deterministic

ring-down of the beam to the removal of a point step force applied atx = L/2 given by

F (t) =

{

F0 for t ≤ 0

0 for t > 0
(30)

wheret is time, andF0 is the magnitude of the force. The value ofF0 is chosen for each

simulation such that the beam deflections remain small and, in this case, the results are

independent of its specific value. The autocorrelation of equilibrium fluctuations in beam

displacement is then given by,

〈z1(0)z1(t)〉 = kBT
Z1(t)

F0

. (31)

We use lower casez1 to indicate stochastic displacement, and upper caseZ1 to indicate the

deterministic ring-down measured at the center of the beamx = L/2. The noise spectrum

of fluctuations in beam displacement is given by,

G(ω) = 4

∫ ∞

0

〈z1(t)z1(0)〉 cos (ωt) dt. (32)

The noise spectrum is used to determineωf andQ for the numerical results. The resonant

frequencyωf is the frequency maximizingG(ω) and the quality is given by

Q ≈ mf (ωf)ωf

γf(ωf)
=

k

4kBT
ω2

fG(ωf). (33)
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The right hand side of Eq. (33) is found usingmf (ωf) =
√

k/ωf and using the peak value

of the noise spectrumG(ωf) to determine the damping. The error in using the bulk mode

spring constant, as opposed to the dynamic spring constant for the fundamental mode, is

small and on the order of several percent.

In summary, the numerical procedure is the following: (i) ComputeZ(t) from a deter-

ministic simulation of the ring down of the beam due to the removal of a step force; (ii)

Compute the autocorrelation of equilibrium fluctuations in displacement using Eq. (31);

(iii) Compute the noise spectrum using Eq. (32); (iv) Calculate diagnostics:ωf is the

frequency that maximizes the noise spectrum, andQ is found from Eq. (33).

We have performed extensive numerical tests on doubly-clamped beams in vacuum and

in fluid to ensure the accuracy of our calculations [31]. For each geometry explored we

have conducted numerical simulations over a range of spatial and temporal discretiza-

tions to ensure the convergence of our reported values for the quality factor and resonant

frequency of the fundamental mode in fluid. The required spatial resolution depended sig-

nificantly upon the geometry explored with the short and wide beam geometries requiring

higher spatial resolution. Typically, we found that a time step∆t . P/15 was sufficient

whereP is the period of the fundamental mode in vacuum. We have also been careful to

choose the size of the overall simulation domain to be large enough such that the bounding

walls do not affect the results. In our results, the bounding walls are always a distance of

15δs or greater from the beam surface whereδs = (ν/ωf)
1/2 is the Stokes length for the

fundamental mode in fluid.

As the baseline geometry we consider a doubly-clamped beam with lengthL′ = 15µm,

width w′ = 0.4µm, and heighth′ = 0.1µm. This geometry is similar to what has been re-

cently used in experiments demonstrating thermoelastic actuation in vacuum and air [33].

Here, we are interested in the beam dynamics in a viscous fluid and use water. This geom-

etry is referred to as case (1) in Table 7 and we consider seven additional geometries which

are chosen as systematic variations of the baseline geometry(L′, w′, h′). Also shown in

Table 7 are the aspect ratios for the different geometries to give an idea of the range of

geometries used and also to give some indication of the deviation from the ideal case of a

long and thin beam used in analytical predictions.

Table 8 illustrates the deviations in geometry when compared with the baseline geometry

of case 1. Also included are the beam properties that can be determined independent of

the fluid dynamics which include the bulk spring constantk, the frequency parameter in
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vacuumR0, and the mass loading parameterT0. We have used finite element numerical

simulations of the beams in vacuum to determine the numerical values ofk andω0 for

all of the geometries considered. Given this information one can use the analytical ex-

pressions to predictQ andωf which is illustrated in Fig. 12. From Table 8 it is clear

that over four orders of magnitude of spring constant, over three orders of magnitude of

frequency parameter, and over a single order of magnitude of the mass loading parameter

are considered by the chosen variations in geometry.

Case L [µm] w [µm] h [µm] L/w L/h w/h

(1) 15 0.4 0.1 37.5 150 4

(2) 15 0.8 0.1 18.75 150 8

(3) 15 1.2 0.1 12.5 150 12

(4) 15 0.4 0.2 37.5 75 2

(5) 15 0.4 0.3 37.5 50 1.33

(6) 5 0.4 0.1 12.5 50 4

(7) 1 0.4 0.1 2.5 10 4

(8) 0.4 0.4 0.1 1 4 4

Table 7: The eight geometries of doubly-clamped beams used in the numerical simula-

tions. Case (1) is the baseline geometry and the remaining cases are variations of this

geometry. The beam aspect ratios areL/w, L/h, andw/h. The horizontal lines sepa-

rate the different studies performed: the baseline geometry, variation in width, variation

in height, and variation in length. The beams are composed of silicon with Young’s mod-

ulus E = 210 GPa, densityρb = 3100 kg/m3 and the fluid is water withρf = 997

kg/m3, η = 8.56 × 10−4 kg/ms. All simulations are performed at room temperature with

T = 300K.

We first quantify the stochastic dynamics of the baseline geometry. The numerical results

for the autocorrelation of equilibrium fluctuations in beam displacement are shown in

Fig. 13(a), and the noise spectrum is shown in Fig. 13(b). In each figure the baseline

geometry is labeledw′.

The autocorrelation curves are normalized usingk/kBT where the value ofk for each

case is given in Table 8. The noise spectra have been normalized using the peak value

G(ωf). These figures illustrate that the dynamics of this micron scale beam in water

are strongly damped. The value of the quality and resonant frequency in fluid using our
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Case L/L′ w/w′ h/h′ k [N/m] R0 T0

(1) 1 1 1 0.40 1.08 1.01

(2) 1 2 1 0.83 4.55 2.02

(3) 1 3 1 1.21 10.19 3.03

(4) 1 1 2 3.19 2.17 0.51

(5) 1 1 3 10.82 3.19 0.34

(6) 1/3 1 1 10.92 10.20 1.01

(7) 1/15 1 1 1178.95 231.55 1.01

(8) 1/37.5 1 1 11413.04 1146.08 1.01

Table 8: The geometry variations with respect to the baseline geometry given by case (1)

with (L′, w′, h′). Cases (2) and (3) explore increasing width, cases (4) and (5) explore in-

creasing thickness, and cases (6)-(8) explore decreasing length. Also shown are the spring

constantk, the frequency based Reynolds number in vacuumR0, and the mass loading

parameterT0. The values ofk andR0 are determined using finite element simulations.

numerical results are given in Table 9 and areQ = 0.80 andωf/ω0 = 0.22. Also shown

are the predictions from analytics using Eqs. (20) and (26) which yieldQ† = 0.68 and

ωf/ω
†
0

= 0.22. The analytical predictions are quite accurate for the frequency drop while

under predicting the quality factor for this geometry.

Next we consider the variation in the stochastic dynamics of the beam as a function of the

beam width. In particular, we double and triple the beam widthw while holdingL and

h constant. For increasing width the frequency parameter increases asR0 ∼ w2 while

the mass loading parameter increases asT0 ∼ w. This has the effect of increasing the

fluid inertia while simultaneously increasing the mass loading. These two counteracting

effects suggest the increase inQ and ωf will only be moderate. The autocorrelations

and noise spectra from numerical simulations are shown in Fig. 13. The autocorrelation

results exhibit both positively and negatively correlated results as expected with the dy-

namics becoming more underdamped as the width is increased. The noise spectra clearly

illustrate that the peak value shifts to higher frequency and that the peak itself becomes

sharper as the width increases. For case 1, the noise spectra has significant contributions

at low frequency whereas for case 3 the noise spectra has become more symmetric with a

Lorentzian shape.

Values for the quality and resonant frequency in fluid from our numerical results are given

28



Case R ωf/ω0 Q Q/Q′ ωf/ω
†
0

Q†

(1) 0.23 0.22 0.80 1.0 0.22 0.68

(2) 1.08 0.24 1.03 1.29 0.27 1.05

(3) 2.91 0.29 1.36 1.71 0.28 1.31

(4) 1.00 0.46 1.28 1.61 0.50 1.35

(5) 2.11 0.66 2.01 2.52 0.66 2.13

(6) 4.80 0.47 1.57 1.97 0.51 2.04

(7) 164.46 0.71 6.13 7.69 0.67 9.22

(8) 885.19 0.77 5.90 7.40 0.69 20.24

Table 9: The stochastic dynamics of the beams in fluid. Shown is the frequency based

Reynolds number in fluidR, the reduction in the resonant frequencyωf/ω0, and the quality

factorQ. Also shown is the improvement of the quality with respect to that of case (1)

given byQ′ = 0.8. Q† andωf/ω
†
0

are the results predicted from analytical theory using

Eqs. (20) and (26).

in Table 9. When compared to the quality for the baseline geometryQ′, the increase in

quality isQ/Q′ = 1.29 for doubling the width, andQ/Q′ = 1.71 for tripling the width.

The quality increases with increasing width however the magnitude of the quality is small

indicating that the beam dynamics remain strongly damped. The increase in the value of

ωf/ω0 is slightly less than what is found forQ. A comparison of our numerical values of

ωf andQ with the analytical predictions of Eqs. (20) and (26) are shown in Fig. 14. The

circles are the results from our numerical simulations and the dashed line is the analytical

prediction whereξ = w/w′ andw′ is the width of the baseline geometry. It is clear that

that the analytical predictions remain quite accurate over this range. This includes case 3

whereL/w ≈ w/h ≈ 12 andL/h ≫ 1. Figure 14 indicates that the magnitude of the

increase in quality with increasing width is quite moderate. Furthermore, the increase in

ωf is quite small and becomes nearly flat atωf/ω0 ≈ 0.24 for ξ & 2.

Next we consider the variation in beam dynamics as the height is increased. We consider

the cases whereh is doubled and tripled while theL andw are held constant. As the

height is increased the frequency parameter increases asR0 ∼ h whereas the mass loading

parameter decreases asT0 ∼ h−1. These two effects both contribute to increasingQ and

ωf . The normalized autocorrelations and noise spectra from our numerical simulations

are shown in Fig. 15. The results clearly indicate an increasing value of bothωf andQ
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Figure 13: The autocorrelations and noise spectra of equilibrium fluctuations in beam

displacement as a function of beam width from numerical results: case 1 (w′), case 2

(2w′), case 3 (3w′). (a) The autocorrelations, the results have been normalized using

k/(kBT ) for each case. (b) The noise spectra, the results have been normalized by the

peak value for each case,G(ωf).

and numerical values are given in Table 9. The relative increase in quality isQ/Q′ = 1.61

when the height is doubled, andQ/Q′ = 2.52 when the height is tripled. The increase in

ωf/ω0 follows a similar trend.

A comparison of our numerical results with the predictions of theory is shown in Fig. 14

usingξ = h/h′. The square symbols are the numerical results and the solid line is the an-

alytical prediction. It is clear that the increases inQ andωf are much larger for variations

in height when compared to what was found for increases in beam width. The analytical

predictions remain quite accurate and insightful over the range of aspect ratios explored

by varying the beam height. We highlight that this includes case 5 wherew/h ≈ 1.

The last case we consider is decreasing the beam length while holding the width and

height constant. In this case the frequency parameter increases rapidly asR0 ∼ L−2

whereasT0 remains constant. The autocorrelations and noise spectra are shown in Fig. 16

which illustrate a significant increase in resonant frequency and quality. From Fig. 16(a)

the results for the most extreme geometry explored,L′/37.5, clearly show the influence

of higher harmonics. The numerical values ofQ andωf from our numerical results are

given Table 9. For case 8 whereL/L′ = 37.5 the increase in quality isQ/Q′ = 7.4

and the reduction of the resonant frequency when compared to its value in vacuum is
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Figure 14: (color) Comparison of numerical results with analytical predictions forQ and

ωf as a function of widthw and heighth. The circles (blue) are for increasing width and

the squares (red) are for increasing height. The solid line is the analytical prediction for

increasing width and the dashed line is the analytical prediction for increasing height. To

place all values on a single plotξ = w/w′ for the varying width results andξ = h/h′ for

the varying height results.

ωf/ω0 = 0.77 indicating significant changes are possible by changing the beam length.

The analytical predictions given in Table 9 show significant deviations from our numerical

results. This is also illustrated in Fig. 17 where the triangles are the numerical results and

the solid lines are the analytical predictions. For case 6 (L/w = 12.5) the analytical

predictions are quite accurate. However, for case 7 (L/w = 2.5), and case 8 (L/w = 1)

the analytical predictions over predictQ and under predictωf/ω0. The approximation

of using the fluid flow from an infinite two-dimensional oscillating cylinder is no longer

well justified. The numerical results suggest the presence of additional modes of fluid

dissipation that are not captured in the two-dimensional theory.

To explore this further we quantify the fluid motion around the beam in the determinis-

tic numerical simulations where the beam rings down upon the removal of a step force.

Figures 18 and 19 illustrate the magnitude of the fluid velocity in the transverseuz and

axial ux directions, respectively. The velocities are plotted along a line beginning at

(0.0, 0.0, 0.01µm) and ending at (L, 0.0, 0.01µm) for all cases. In our notation the fluid

velocity in the (x, y, z) directions is (ux, uy, uz), see Fig. 11 for the definition of the coor-

dinate directions (x, y, z). The velocities are shown at the time when the velocity of the
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Figure 15: The autocorrelations and noise spectra as a function of beam height from nu-

merical results: case 1 (h′), case 4 (2h′), case 5 (3h′). (a) The normalized autocorrelations.

(b) The normalized noise spectra.

beam is at its maximum value which occurs when the center of the beam crossesz = 0

the first time during its ring down. The maximum value ofuz at this time is labeledu0

and is used to normalize both the transverse and axial velocities. The axial direction is

normalized by the length so that all cases can be represented on the same figure.

Figure 18 shows the transverse fluid velocityuz for cases 1-8. The baseline geometry

(dashed line) and cases 2-7 (solid lines) collapse onto a single curve with a shape similar

to that of the fundamental mode of a doubly-clamped beam. Case 8 differs significantly

with a much sharper peak indicating that its dynamics are quite different which is expected

since this geometry is substantially different than the others.

Figure 19(a) illustrates the normalized axial velocitiesux as the beam width and height

are varied. In the approximation of a two-dimensional flow the axial velocity is identically

zero and any deviations from this in the numerical results indicate fluid dynamics not

considered in the analytical predictions. The bimodal shape of the curves is expected

from the symmetry of the fundamental mode. Forx > L/2 the axial fluid velocity is

positive and forx < L/2 it is negative. The baseline geometry is shown as the dashed

line and has a negligible axial fluid velocity. At its maximum value it is only∼ 2.5%

of the maximum transverse velocityu0. A similar trend is found for cases 2-5. As the

width or height is increased the relative magnitude of the axial velocities increase. It is

expected that if larger values of the width or height were computed the axial velocities
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Figure 16: The autocorrelations and noise spectra as a function of beam length from nu-

merical results: case 1 (L′), case 6 (L′/3), case 7 (L′/5), case 8 (L′/37.5). (a) The nor-

malized autocorrelations. (b) The normalized noise spectra.

would become significant and at this point the analytical predictions would show large

deviations.

Figure 19(b) shows the relative value of the axial velocities as the length of the beam

is decreased. The baseline geometry is included for reference as the dashed line. It is

clear that the axial velocities are now quite significant and range from 10% to 40% of

u0. The axial velocities do not vanish atx = 0, L for cases 7 and 8 because these beams

are held by rigid supports, see Fig. 11, and the lateral side walls of the numerical domain

are distant. The axial velocities result in fluid dissipation not accounted for in the two-

dimensional theory and contribute significantly to the lower values ofQ found in the

numerical simulations. Furthermore,ωf from the numerical simulations are larger than the

analytical predictions. The added mass in the simulations are smaller than the predicted

values and this reduction is a direct result of the three-dimensionality of the fluid flow.

The maximum value of the relative axial velocity does not follow a monotonic trend with

L because as the length becomes small the precise nature of the beam dynamics vary

in a complicated manner which directly affects the fluid motion and therefore the fluid

dissipation. In fact, the smallest beamL′/37.5 has an aspect ratio ofL/w = 1 and is better

described as a plate undergoing complicated dynamics as indicated by the presence of

higher mode effects in Fig. 16(a). Overall, our results suggest that the relative magnitude

of the axial velocity can be used to indicate the applicability of the two-dimensional theory.
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Figure 17: (color) The variation of the qualityQ, panel (a), and of the resonant frequency

in fluid ωf/ω0, panel (b), by decreasing the lengthL of the beam relative to the value of

case (1) given byL′. The triangles are the results from numerical simulation and the solid

line is the analytical prediction.

In many microscale technologies the ability to sense small forces is important and there-

fore a small spring constant is desirable. In light of this, the improved performance, as

measured by increased values ofQ andωf with increasingw, increasingh or decreasing

L all come at the price of reduced force sensitivity. Using Eq. (28) to estimatek yields

its dependence upon geometry and the magnitude of the improved performance follows

the same trend as increasingk. Overall, these tradeoffs would need to be balanced in a

particular application.

The stochastic dynamics of micron and nanoscale elastic beams can be directly quantified

using deterministic numerical computations for the precise geometries and conditions of

experiment. We have shown that the geometry of doubly-clamped beams can be tailored

to overcome the strong fluid damping that occurs for small scale systems in a viscous fluid.

Our numerical exploration has been used to build physical insights into the stochastic dy-

namics and to place realistic bounds upon the applicability of the two-dimensional theory.

Overall, we find that the two dimensional theory is quite accurate far beyond what may

have been expected based upon the underlying assumptions. When deviations do occur a

significant factor are fluid velocities in the axial direction resulting in increased dissipa-

tion and a lower added mass. It is anticipated that these results will be useful in guiding

the development of future experiments by providing the basis for predictions that cover a

wide range of geometries. Furthermore, our results provide insight into the development
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Figure 18: The transverse fluid velocityuz for cases 1-8 along the line beginning at

(0.0,0.0,0.01µm) and ending at (L,0.0,0.01µm) from the deterministic numerical simu-

lations where the beam velocity is at its maximum value. The baseline geometry is shown

as the dashed line, cases 2-7 are the solid lines, and case 8 is the dash-dot line.

of accurate theoretical models valid for the finite geometries used in experiment.

5 Executive Summary

We have developed analytical and theoretical techniques to quantify the stochastic and

externally driven dynamics of elastic objects in a viscous fluid for the precise conditions of

experiment. These techniques allow the quantification of future designs aiming to exploit

the dynamics of micro and nanoscale devices in fluid.

This project provided support for the following graduate research. The theses are available

to the public in digital form from the University Library at Virginia Tech (www.lib.vt.edu).

The specific thesis details are given below:
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to overcome viscous damping, Virginia Tech, (2009).
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and nanoscale cantilevers in viscous fluid and near a solid boundary, Virginia Tech,

(2008).
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